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Intrusion of nonwetting liquid in paper
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The saturation curve of a sample of paper board was measured with mercury-intrusion porosimetry, and the
three-dimensional structure of its pore space was determined by x-ray tomographic imaging. Ab initio numeri-
cal simulation of intrusion on the tomographic reconstruction, based on the lattice-Boltzmann method, was in
excellent agreement with the measured saturation curve. A numerical invasion-percolation simulation in the
same tomographic reconstruction showed good agreement with the lattice-Boltzmann simulation. The access
function of the sample, determined from the saturation curve and the pore-throat distribution determined from

the tomographic reconstruction, indicated that the ink-bottle effect is significant in paperlike materials.
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Mercury-intrusion porosimetry (MIP) is a widely used
technique for pore-size characterization [1,2]. MIP measure-
ments are fast and easy to perform, and the method is appli-
cable to pore sizes varying over several orders of magnitude.
For most materials of interest mercury is a nonwetting liquid;
i.e., an external pressure is needed to make mercury intrude
the pores of the sample. By increasing the pressure of the
mercury in which the sample is immersed, increasingly
smaller pores of it are filled and the volume of the intruded
mercury is measured as a function of pressure.

In the everyday use of this method, interpretation of the
measured volume is still mostly based on the assumption that
pores are nonintersecting cylindrical capillaries with circular
cross section and that all pores are equally accessible—i.e.,
connected to sample surface directly or through larger pores.
By considering a liquid column in one such pore and balanc-
ing the forces resulting from the surface tension and external
pressure, one obtains the Washburn equation [3]
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where Ap is the pressure difference across the meniscus
(capillary pressure), 7y the surface tension and 6 the contact
angle of the liquid, and r the radius of the pore. This equa-
tion provides a relationship between the applied pressure and
the pore size intruded, and is commonly used to convert the
result of measurement to a cumulative porosity as a function
of pore size.

The assumptions thus made on the pore structure are not,
however, valid for most real materials. The pore space can
hardly be expected to resemble a system of nonintersecting
capillaries. A fraction of the pores will also be connected to
the sample surface only through smaller pores and will not
be filled before these. The volume of small pores is thus
overestimated by the equal-access assumption. This “ink-
bottle effect” has already been described by Ritter and Drake
[4] and Meyer [5]. Direct evidence of the size of this effect
is, however, very limited (see Ref. [6]). This effect leads to
the introduction within percolation theory of the access func-
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tion, which, for a given external pressure, is the fraction of
the allowed pore space actually accessible to the invading
liquid [2]. This access function can be solved analytically for
the Bethe lattice [7], but it has been difficult to determine it
for real materials.

It has also been proposed [2,8,9] that the pressure depen-
dence of the intruded volume measures a kind of pore-throat
distribution rather than the pore-size distribution, which is
plausible although there is hardly any direct evidence avail-
able. This assumption is also made in the invasion-
percolation (IP) approach to intrusion [2]. The intrusion-
extrusion hysteresis evident in most cases in MIP can be
explained by IP. The extrusion phase actually probes the
pore-size distribution, but due to a nontrivial access function,
the extrusion curve deviates from the intrusion curve with a
residual saturation at vanishing external pressure. There are
also views, however, by which the difference in the advanc-
ing and retreating contact angles in the intrusion and extru-
sion phases, respectively, can explain the “apparent” hyster-
esis [1].

Difficulties with the interpretation of MIP data for some
common materials have even led to rather pessimistic views
of its applicability [10]. Recently attempts have been made
to compare MIP results with those of image analysis [11,12],
while ab initio computer simulations have not been em-
ployed to analyze MIP. One has mostly analyzed filling of
pore space based on the Washburn equation [13,14]).

In this article we report the results of a detailed study of
MIP on paper board [15], in which experimental MIP data,
and also image analysis, ab initio fluid-flow simulations and
a numerical model of IP based on a high-resolution tomog-
raphic reconstruction of the same paper board are consid-
ered. The fluid-flow simulation is based on the lattice-
Boltzmann (LB) method, and it is used to describe the
intrusion in the sample of a nonwetting liquid under external
pressure.

In the LB method fluid is modeled by fictitious fluid par-
ticles and a discretized (space, time, and velocity are all dis-
crete) kinetic equation is solved on a regular grid for their
velocity-distribution functions. The LB algorithm consists of
two phases: advection and collision. In the advection phase
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distribution functions are moved to neighboring lattice
nodes. Particle collisions are modeled such that distributions
are relaxed towards their local equilibria. The relaxation-time
parameter can be exploited in adjusting the viscosity of the
fluid. Macroscopic quantities such as fluid density and veloc-
ity are obtained as velocity moments of the distributions in
analogy with continuum kinetic theory, and pressure is ob-
tained from an equation of state. Through a Chapman-
Enskog analysis, one can show that the macroscopic quanti-
ties obey the Navier-Stokes equation [16,17].

In order to model a fluid with multiple phases, we use
here the multiphase model by Shan and Chen [18] based on
interparticle potentials. Auxiliary forces are added between
neighboring fluid nodes and between fluid and wall nodes.
The strengths of these forces can be adjusted so as to change
the surface tension and the contact angle, respectively. In this
model, an automatic separation into liquid and gas phases
occurs. There is no need to track the positions of the liquid-
gas interfaces as the contact-line dynamics automatically fol-
lows from the auxiliary microscopic interactions. Further de-
tails and benchmarks to the numerical methods used here can
be found in Ref. [19]. LB simulations of two-phase and two-
component fluid flow in porous media have been reported by
several authors; see, e.g., Refs. [20-25].

In contrast with previous simulation studies on MIP
[13,14], our approach is to solve the actual flow equations in
the pore structure given by x-ray-computed microtomogra-
phy («CT) and to thereby mimic the intrusion process in a
realistic manner. In uCT a large set of images is obtained by
passing radiation through the sample in different directions.
The projections thus produced can be combined so as to
reconstruct the interior structure of the sample. Here the
uCT imaging of the sample (paper board with a basis weight
of 300 g/m™2) was done with a SkyScan 1072 system. Simu-
lations were performed in a tomographic reconstruction of
this sample of size 0.46 mm X 0.46 mm X 0.2 mm, with a
voxel size of about (2 wm)3. In the transverse direction this
reconstruction contains the whole thickness of the sample.

In the LB simulation, the standard MIP measurement car-
ried out for the same paper board was realized by adding
liquid on top of two opposite surfaces of the sample. The
pressure of the liquid was then gradually increased, and the
amount of liquid intruding the sample was recorded for each
pressure increment.

According to the classification by Lenormand et al. [26],
immiscible displacement in a porous medium can be charac-
terized by two dimensionless variables: capillary number
Ca=qu,/y and viscosity ratio M=pu,/u,,. Here, g is the
mean flow velocity and u,, and w, are the viscosities of the
wetting and nonwetting fluids, respectively. In the present
case we had log;o(M)~1 and log,,(Ca)~-5 in the LB
simulation and log;o(M)~2 and log;,(Ca)~—6 in the ex-
periment. The simulation and the experiment are thereby
both carried out within the same dynamical region of “cap-
illary fingering” (see Ref. [26]) and are thus comparable,
although not exactly similar.

The measured and simulated saturation curves were trans-
formed by the Washburn equation into cumulative porosities
as functions of the pore-throat radius. In the simulation, ra-
dius was first calculated in lattice units and then transformed
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FIG. 1. Cumulative porosities as a function of pore diameter,
obtained by LB simulation (solid circles), experiment (solid line),
IP simulation (dotted line), and image analysis (dashed line).

to dimensional units by simply multiplying it with the voxel
size. The results are shown in Fig. 1. The two results coin-
cide surprisingly well. We can thus assume that the simulated
intrusion is a realistic representation of the experimental one.

Determination of pore sizes from the tomographic recon-
struction was based on the algorithm of Ref. [14]. A random
point in the pore space was chosen, and the pore size asso-
ciated with this point was defined as the diameter of the
largest sphere that fitted into the pore space and included the
initial point. This procedure was then iterated sufficiently
many times. A pore-throat distribution was obtained by first
determining the skeleton [27] and distance map (i.e., the dis-
tances from each pore voxel to the pore walls) of the pore
space. Pore throats were found as saddle points in the dis-
tance map for the skeleton. The volume attached to each pore
throat was determined as the size of the pore space that could
be invaded away from the closest surface such that the pore
or throat diameter remained larger than or equal to that of the
initial throat.

Utilizing the data obtained from these analyses we could
also simulate the filling of the pore space by an IP process. In
the intrusion phase the external pressure determined the
minimal pore-throat size that could be invaded, while in the
extrusion phase it determined the maximum size of the pores
that could be evacuated. Evacuation was only possible
through a continuous liquid phase reaching the sample sur-
face. In Fig. 1, we also show the result of an IP simulation
for the same sample. This simulation was affected by the
discreteness of the image (pore-throat radius) more than the
LB simulation, but shows, however, a qualitatively similar
behavior as the LB simulation and MIP measurement. Fi-
nally, in Fig. 1, we show the pore-size distribution as ob-
tained by image analysis. This distribution differs qualita-
tively from the others as it does not have a clear inflection
point, thus indicating the existence of an ink-bottle effect.

Comparing the pore spaces filled at different values of
pressure (pore-throat radius) by the LB and IP simulations,
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FIG. 2. (Color) Pores filled by the liquid just beyond the perco-
lation pressure. The upper image is the LB result and the lower one
the IP result.

we found that they indeed are very similar. The inflection
point in the cumulative porosity gives the pressure at which
the invading liquid first percolates the sample. In Fig. 2 we
show the intruded liquid, just beyond the percolation pres-
sure, as given by the two different simulations. It is evident
that the intrusion process can quite well be described as one
of IP.

This conclusion supports the earlier experimental obser-
vations in two dimensions (2D) of Ref. [28]. The result that
the inflection point in the cumulative porosity gives the per-
colation pressure is also in line with earlier observations (see,
e.g., Ref. [29]) and with earlier simulation results for a 2D
porous-medium model [13].

To analyze the actual intrusion process in view of the
common interpretation of MIP results, by which the pore
space is filled in decreasing order of pore (or pore-throat)
size, we determined in the LB simulation the pore-size dis-
tributions by image analysis of the filled and empty parts of
the pore space at each value of pressure. A sequence of pore-
size distributions for the empty part of the pore space is
shown in Fig. 3. Notice that their shape remains very similar
even though the pressure is increased, until the inflection
point in the cumulative porosity is reached. This behavior is
very different from what one expects on the basis of the
common interpretation. It indicates that the ink-bottle effect
is significant for paperlike porous materials and that the ac-
cess function will be markedly nonlinear.

Beyond the inflection point, the pore-size distribution of
the empty pore space evolves qualitatively as expected:
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FIG. 3. Normalized pore-size distribution of the empty part of
the pore space for different values of pressure. The dashed line is
the distribution just before and dotted line just after the inflection
point in the cumulative porosity. At low pressures the distribution
does not differ much from that at the inflection point, but thereafter
(solid lines) increasing pressure mostly removes the largest remain-
ing pores that remain in the distribution.

mainly the large-size pores gradually vanish when the pres-
sure is increased further. Notice, however, that there is no
sharp cutoff in the size of the removed pores. A similar
analysis of the pore-throat distributions gave exactly the
same result.

The significance of the ink-bottle effect can be evaluated
by determining the access function X,(X,;(p)), where X,;,(p)
is the fraction of the pore space allowed by the size of the
entry pore throats at pressure p of the invading liquid [30]:
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FIG. 4. The access function for the sample of paper board as
determined by LB (solid line) and IP (dashed line) simulations. The
dotted line is the result in the absence of the ink-bottle effect. In the
inset shown are the intrusion and extrusion curve for this sample as
determined by IP simulation.
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Xsar(p) = Xa(Xth(p))- (2)

Here X,,(p) is the saturation curve that we have deter-
mined experimentally by MIP, and by the LB and IP simu-
lations (corresponding to the cumulative porosities of Fig. 1).
The LB and IP access functions are shown in Fig. 4. The
X,,(p) curve was determined by image analysis from the to-
mographic reconstruction.

As anticipated, the access function significantly deviates
from the dotted line, which would be the result from equal
access to all pores—i.e., without any ink-bottle effect. Notice
that the LB curve lies below the IP curve: the ink-bottle
effect is somewhat underestimated by the IP analysis, which
cannot completely reproduce the intrusion-extrusion process.
Even then the residual saturation S, of this process is about
0.40, which is another indication of the significance of the
ink-bottle effect in paperlike materials.

For an additional check of the consistency of the IP pic-
ture, we also determined the residual saturation from the LB
intrusion curve. With the usual assumptions of IP [30], the
residual saturation is given by

S, =8, f %g(ﬁda (3)

where S is the saturation at the end of intrusion, ry the
corresponding minimum pore diameter of the filled pore

o
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space, and g(r) the pore-size distribution determined from
the tomographic reconstruction. If we use the LB result for
the access function, we find from this equation that S,
~(0.34. This is in good agreement with the result from the IP
extrusion curve.

In conclusion, we have simulated intrusion and extrusion
of a nonwetting liquid in a tomographic reconstruction of a
sample of paper board. The intrusion curve of the same paper
board was also measured by standard MIP. When the result
of the ab initio LB simulation was interpreted exactly as the
raw data in the measurement, the resulting cumulative po-
rosities were in excellent agreement. Comparison of the re-
sults of LB and IP simulations on the same tomographic
reconstruction indicated that the intrusion process can indeed
be described by invasion percolation, although agreement is
not quantitatively perfect. The IP process also gave consis-
tent results for the residual saturation of the sample after
extrusion of the nonwetting liquid.

The access function, determined from the saturation curve
and the pore-throat distribution for the tomographic recon-
struction, indicates that the ink-bottle effect is significant in
paperlike materials. The size distributions of the remaining
empty pore space do not change much until the invading
liquid first percolates the whole sample. It remains to be seen
how important this effect is in other porous materials.
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